Copied to
clipboard

G = Dic5.21C24order 320 = 26·5

21st non-split extension by Dic5 of C24 acting via C24/C23=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic5.21C24, D5:(C8oD4), (D4xD5).2C4, D4.F5:7C2, C5:C8.6C23, Q8.F5:7C2, C4oD4.4F5, (Q8xD5).2C4, D5:C8:8C22, C4oD20.3C4, D4.13(C2xF5), Q8.14(C2xF5), D20.13(C2xC4), D5:M4(2):9C2, C4.F5:11C22, C4.32(C22xF5), C2.16(C23xF5), C10.15(C23xC4), C20.32(C22xC4), (C4xD5).55C23, D10.6(C22xC4), C22.F5:5C22, Dic10.14(C2xC4), C22.3(C22xF5), Dic5.6(C22xC4), D4:2D5.17C22, Q8:2D5.17C22, (C2xDic5).179C23, C5:3(C2xC8oD4), (C2xD5:C8):7C2, (C2xC5:C8):12C22, (D5xC4oD4).9C2, (C5xC4oD4).3C4, C5:D4.3(C2xC4), (C2xC4).94(C2xF5), (C2xC20).76(C2xC4), (C5xD4).13(C2xC4), (C4xD5).47(C2xC4), (C5xQ8).14(C2xC4), (C2xC10).4(C22xC4), (C2xC4xD5).222C22, (C22xD5).64(C2xC4), SmallGroup(320,1601)

Series: Derived Chief Lower central Upper central

C1C10 — Dic5.21C24
C1C5C10Dic5C5:C8C2xC5:C8C2xD5:C8 — Dic5.21C24
C5C10 — Dic5.21C24
C1C4C4oD4

Generators and relations for Dic5.21C24
 G = < a,b,c,d,e,f | a10=d2=f2=1, b2=e2=a5, c2=b, bab-1=a-1, cac-1=a3, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=a5d, ef=fe >

Subgroups: 778 in 266 conjugacy classes, 138 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C2xC8, M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, Dic5, Dic5, C20, C20, D10, D10, D10, C2xC10, C22xC8, C2xM4(2), C8oD4, C2xC4oD4, C5:C8, Dic10, C4xD5, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C5xQ8, C22xD5, C2xC8oD4, D5:C8, D5:C8, C4.F5, C2xC5:C8, C22.F5, C2xC4xD5, C4oD20, D4xD5, D4:2D5, Q8xD5, Q8:2D5, C5xC4oD4, C2xD5:C8, D5:M4(2), D4.F5, Q8.F5, D5xC4oD4, Dic5.21C24
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C24, F5, C8oD4, C23xC4, C2xF5, C2xC8oD4, C22xF5, C23xF5, Dic5.21C24

Smallest permutation representation of Dic5.21C24
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 16 6 11)(2 15 7 20)(3 14 8 19)(4 13 9 18)(5 12 10 17)(21 34 26 39)(22 33 27 38)(23 32 28 37)(24 31 29 36)(25 40 30 35)(41 54 46 59)(42 53 47 58)(43 52 48 57)(44 51 49 56)(45 60 50 55)(61 74 66 79)(62 73 67 78)(63 72 68 77)(64 71 69 76)(65 80 70 75)
(1 58 16 42 6 53 11 47)(2 55 15 45 7 60 20 50)(3 52 14 48 8 57 19 43)(4 59 13 41 9 54 18 46)(5 56 12 44 10 51 17 49)(21 72 34 68 26 77 39 63)(22 79 33 61 27 74 38 66)(23 76 32 64 28 71 37 69)(24 73 31 67 29 78 36 62)(25 80 40 70 30 75 35 65)
(1 29)(2 30)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 11 6 16)(2 12 7 17)(3 13 8 18)(4 14 9 19)(5 15 10 20)(21 33 26 38)(22 34 27 39)(23 35 28 40)(24 36 29 31)(25 37 30 32)(41 57 46 52)(42 58 47 53)(43 59 48 54)(44 60 49 55)(45 51 50 56)(61 77 66 72)(62 78 67 73)(63 79 68 74)(64 80 69 75)(65 71 70 76)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,16,6,11)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35)(41,54,46,59)(42,53,47,58)(43,52,48,57)(44,51,49,56)(45,60,50,55)(61,74,66,79)(62,73,67,78)(63,72,68,77)(64,71,69,76)(65,80,70,75), (1,58,16,42,6,53,11,47)(2,55,15,45,7,60,20,50)(3,52,14,48,8,57,19,43)(4,59,13,41,9,54,18,46)(5,56,12,44,10,51,17,49)(21,72,34,68,26,77,39,63)(22,79,33,61,27,74,38,66)(23,76,32,64,28,71,37,69)(24,73,31,67,29,78,36,62)(25,80,40,70,30,75,35,65), (1,29)(2,30)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20)(21,33,26,38)(22,34,27,39)(23,35,28,40)(24,36,29,31)(25,37,30,32)(41,57,46,52)(42,58,47,53)(43,59,48,54)(44,60,49,55)(45,51,50,56)(61,77,66,72)(62,78,67,73)(63,79,68,74)(64,80,69,75)(65,71,70,76), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,16,6,11)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,40,30,35)(41,54,46,59)(42,53,47,58)(43,52,48,57)(44,51,49,56)(45,60,50,55)(61,74,66,79)(62,73,67,78)(63,72,68,77)(64,71,69,76)(65,80,70,75), (1,58,16,42,6,53,11,47)(2,55,15,45,7,60,20,50)(3,52,14,48,8,57,19,43)(4,59,13,41,9,54,18,46)(5,56,12,44,10,51,17,49)(21,72,34,68,26,77,39,63)(22,79,33,61,27,74,38,66)(23,76,32,64,28,71,37,69)(24,73,31,67,29,78,36,62)(25,80,40,70,30,75,35,65), (1,29)(2,30)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20)(21,33,26,38)(22,34,27,39)(23,35,28,40)(24,36,29,31)(25,37,30,32)(41,57,46,52)(42,58,47,53)(43,59,48,54)(44,60,49,55)(45,51,50,56)(61,77,66,72)(62,78,67,73)(63,79,68,74)(64,80,69,75)(65,71,70,76), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,16,6,11),(2,15,7,20),(3,14,8,19),(4,13,9,18),(5,12,10,17),(21,34,26,39),(22,33,27,38),(23,32,28,37),(24,31,29,36),(25,40,30,35),(41,54,46,59),(42,53,47,58),(43,52,48,57),(44,51,49,56),(45,60,50,55),(61,74,66,79),(62,73,67,78),(63,72,68,77),(64,71,69,76),(65,80,70,75)], [(1,58,16,42,6,53,11,47),(2,55,15,45,7,60,20,50),(3,52,14,48,8,57,19,43),(4,59,13,41,9,54,18,46),(5,56,12,44,10,51,17,49),(21,72,34,68,26,77,39,63),(22,79,33,61,27,74,38,66),(23,76,32,64,28,71,37,69),(24,73,31,67,29,78,36,62),(25,80,40,70,30,75,35,65)], [(1,29),(2,30),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,11,6,16),(2,12,7,17),(3,13,8,18),(4,14,9,19),(5,15,10,20),(21,33,26,38),(22,34,27,39),(23,35,28,40),(24,36,29,31),(25,37,30,32),(41,57,46,52),(42,58,47,53),(43,59,48,54),(44,60,49,55),(45,51,50,56),(61,77,66,72),(62,78,67,73),(63,79,68,74),(64,80,69,75),(65,71,70,76)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J 5 8A···8H8I···8T10A10B10C10D20A20B20C20D20E
order1222222222444444444458···88···8101010102020202020
size1122255101010112225510101045···510···10488844888

50 irreducible representations

dim1111111111244448
type++++++++++
imageC1C2C2C2C2C2C4C4C4C4C8oD4F5C2xF5C2xF5C2xF5Dic5.21C24
kernelDic5.21C24C2xD5:C8D5:M4(2)D4.F5Q8.F5D5xC4oD4C4oD20D4xD5Q8xD5C5xC4oD4D5C4oD4C2xC4D4Q8C1
# reps1336216622813312

Matrix representation of Dic5.21C24 in GL6(F41)

4000000
0400000
0040100
0040010
0040001
0040000
,
3200000
0320000
000001
000010
000100
001000
,
2700000
0270000
00932320
0003209
0090320
00032329
,
010000
100000
001000
000100
000010
000001
,
900000
090000
001000
000100
000010
000001
,
100000
0400000
001000
000100
000010
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,40,40,40,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,9,0,9,0,0,0,32,32,0,32,0,0,32,0,32,32,0,0,0,9,0,9],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

Dic5.21C24 in GAP, Magma, Sage, TeX

{\rm Dic}_5._{21}C_2^4
% in TeX

G:=Group("Dic5.21C2^4");
// GroupNames label

G:=SmallGroup(320,1601);
// by ID

G=gap.SmallGroup(320,1601);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,184,570,102,6278,818]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^10=d^2=f^2=1,b^2=e^2=a^5,c^2=b,b*a*b^-1=a^-1,c*a*c^-1=a^3,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=a^5*d,e*f=f*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<